Table **111.** Analytical Data for New Compounds

- 1b high-resolution mass spectrum,^{a} m/z 246.0720 $(C_{11}H_{1s}FO_3S$ requires 246.0726)
1c anal.^b calcd for $C_{12}H_{17}O_4S$: C, 55.82; H,
- 7.02. Found: C, 56.03; H, 6.98
- 3 high-resolution mass spectrum,^{*a*} *m*/*z* 284.1441 $(C_{15}H_{24}O_5S$ requires 284.1446)
- 5b solvolysis equivalent,^c 269 \pm 2 ($C_{14}H_{18}O_3S$) requires 266.1)

By Dr. Woodfin Ligon, General Electric Research and Development Center, Schenectady, NY. b Instranal Laboratory, Inc., Rensselaer, NY. *c* Weighed samples
were heated with measured amounts of sodium acetate in acetic acid and then back-titrated with standard perchloric acid in acetic acid solution.

2-tert-Butylnaphthalene was prepared after the manner of Crawford and Glesmann¹⁴ and purified by preparative GC: NMR (CDC1,) **6** 1.4 *(8,* 9 H), 7.2-7.8 (m, 7 **HI.**

Reaction of Sulfonate **Esters** with Arene Anion Radicals. The general procedure was to place measured quantities of sulfonate ester (0.1-0.2 mmol) and internal standard (usually an alkane of suitable molecular weight) in a 10-mL vial equipped with glass covered stirring bar and septum cap. To this was added ca. 5 **mL** of dry solvent, and the system was thoroughly flushed with dry N_2 or Ar. Anion radical solution $(0.2-0.4 \text{ M})$ was then added dropwise via syringe until the intense color of the reagent persisted. The contents of the vial were stirred and cooled (if noted in Table I) during this period. After being stirred for an additional 10 min, the reaction mixture was treated with a few drops of water and dried with a small amount of magnesium sulfate. Analysis by GC waa then carried out directly on this solution. Various data for the new compounds are given in Table 111.

Acknowledgment. This research was supported in part by Grant No. 77-3241A from the Air Force Office of Scientific Research. We thank Dr. Ann Ligon for experimental assistance and consultation.

Registry No. la, 2346-07-8; **lb,** 81390-32-1; **IC,** 81390-33-2; **2,** 21816-03-5; 3, 60697-64-5; 4, 25966-61-4; 5a, 4455-09-8; **5b,** 32376- 95-7; **8,** 5906-87-6; naphthalene radical ion (1-) sodium salt, 3481- 12-7; anthracene radical ion (1-) sodium salt, 12261-48-2; acenaphthylene radical ion (1-) sodium salt, 81390-34-3; neopentyl alcohol, 75-84-3; **&@-dimethylbenzenethanol,** 2173-69-5; 2,2-dimethylhexanol, 2370-13-0; 3,3-dimethyl-2-butanol, 464-07-3; benzenemethanol, 100-51-6; **endo-bicyclo[2.2.l]hept-5-en-2-01,694-97-3; exo-bicyclo[2.2.l]hept-5-en-2-ol,** 2890-98-4; l-tert-butyldihydronaphthalene, 81390-35-4; **2-tert-butyldihydronaphthalene,** 81390- 36-5; cumene, 98-82-8; naphthalene, 91-20-3; anthracene, 120-12-7; acenaphthylene, 208-96-8.

(14) H. M. Crawford and M. C. Glesmann, J. Am. Chem. Soc. 76, 1108 (1954).

Synthesis of a-Phenylthio Aldehydes and Alkylation of 2-(Phenylthio)octanal Enolate

Rahul Ray and Donald S. Matteson*

Department of *Chemistry, Washington State University, Pullman, Washington 99164*

Received October 14, 1981

The preparation and α -lithiation of α -(phenylthio)alkaneboronic esters **(1)** and their condensation with carboxylic esters to provide a regiospecific synthesis of *a*phenylthio ketones has been reported.' We have now extended this chemistry to formate esters and have found

that α -phenylthio aldehydes (2) are readily prepared in good yields, as summarized in Table I. To demonstrate the potential utility of **2 as** synthetic intermediates, we have studied the α -deprotonation of α -(phenylthio)octanal **(2a)** and the alkylation of the resulting enolate by allyl and other reactive halides, **as** summarized in Table 11.

 α -Phenylthio aldehydes have been made previously from aldehyde enolates by Seebach and Teschner? and reactions of α -thio aldehydes have been described by Duhamel and co-workers.³

Two reports of direct alkylation of aldehydes have appeared. Isobutyraldehyde has been C alkylated with benzyl chloride in the presence of sodium hydroxide and a phase-transfer catalyst.⁴ A more general reaction is the generation of aldehyde enolates with potassium hydride in tetrahydrofuran (THF) and their alkylation with allylic or benzyl halides.⁵ The latter approach proved applicable to an α -phenylthio aldehyde.

Addition of 2-(phenylthio)octanal (2a) to a suspension

2a
$$
P_{\text{PIS}} = \frac{R}{13} \times 10^{-10} \text{ m/s}
$$
 2b 2c 2d 2d 2e 2e 2f 2f 2f 2g 2h 2h

of potassium hydride in THF at room temperature resulted in hydrogen evolution and formation of the enolate within a few minutes. It was verified that conversion to enolate is complete by quenching a sample with D_2O , which led to recovered **octanal** that lacked any measurable absorption by the α proton at δ 3.4 and had a singlet in place of the usual CHO doublet at **6** 9.2. Addition of allyl bromide or a similarly reactive halide led to a mixture of C alkylation and 0 alkylation products 3 and **4,** respectively, as summarized in Table 11. When a mixture of cyclohexane and benzene was used in place of THF as solvent, formation of the enolate was slower but the proportion of C alkylation product (3) became much more favorable (Table 11). In contrast, addition of an equivalent of dicyclohexyl-18 crown-6 resulted in exclusive 0 alkylation of **2a** to **4c** by phenyl bromide in THF.

In contrast to the highly successful results with allylic halides, a single attempted reaction of the potassium enolate of **2a** with a typical primary halide, n-propyl iodide, yielded no alkylation product whatever, as indicated by TLC and *NMR* analysis of the reaction mixture. Although primary alkyl iodides have been reported to alkylate simple aldehyde enolates,⁵ they gave lower yields and more O alkylation than allylic bromides, and this precedent did not encourage us to pursue the matter further.

Experimental Section

Reactions involving carbanions were run under argon in oven-dried glassware, with transfer of reagents by syringe.

⁽¹⁾ Matteaon, D. S.; he, K. J. Am. *Chem. SOC.* 1978,1W,1325-1326. Matteson, D. S.; Arne, K.; Organometallics 1982, I, 280-288.

⁽²⁾ Seebach, D.; Teschner, M. Chem. Ber. 1976, 109, 1601-1616. (3) Duhamel, P.; Duhamel, L.; Chauvin, J. C. R. Hebd. Seances Acad.

Sci., Ser. C 1972, 274, 1233-1236.

⁽⁴⁾ Sj6berg, K. Aldrichimica Acta 1980, 13, 55-58.

⁽⁵⁾ Groenwegen, P.; Kdenberg, H.; **van** der Gen, A. Tetrahedron Lett. 1978, 491-494.

Table **I.** a-Phenylthio Aldehydes **(2)** from Pinacol **a-(Pheny1thio)alkaneboronates**

R of RCH(SPh)BO, $C_2(CH_1)$ ₄ (1) and $RCH(SPh)CHO(2)$	vield of $2. \%$	¹ H NMR of RCH(SPh)CHO, δ^a			
		CHSPh	CHO	SC _k H _k	
$CH_3(CH_2)$, (a)	61.85 ^b	3.38	9.18	7.2	0.87(3), 1.3(10)
$CH3CH=CHCH3-(b)$	68^c	3.68	9.67	7.4	1.8(3), 2.5(2), 5.7(2)
PhCH, – (c)	86	3.75	9.53	7.4	3.00(2), 7.4(5)
$PhCH=CH-CH, - (d)$		3.58	9.60	7.4	2.6(2), 6.4(2), 7.4(5)
$C, H_4O, C(CH_3)$ (CH ₂) – (e)	57	3.60	9.60	7.4	1.5(9), 3.95(4)

^{*a*} In CCl₄, internal Me₄Si reference. Peaks had expected multiplicities and integrals. ^b Improved vield when 1 equiv of $Me₂ NCH₂ NMe₂$ was used in preparation of α -lithio boronic ester. α Ethyl formate was used. This compound was not fully purified.

Table 11. Alkylation of the Potassium Enolate of *24* Pheny1thio)octanal

halide, RX	solvent	yield of 3. $%$ ^{a}	yield of $4. \%$ ^{a}
CH , = CHCH, Br	THF	43	24
$CH2=CHCH2Br$	HC ^b	76	12
$CH3CH=CHCH2Brc$	HС	84	Ω
$(CH_3)_2C=CHCH_2Br$	THF	59	28
$(CH_3)_2C=CHCH_2Br$	THF ^d	Ω	$\sim 100e$
$(CH_3)_2C=CHCH_2Br$	HС	81	
PhCH, Br	HС	89	
CH _{-I}	THF	\sim 50 e	$\sim 50^{e,f}$

 a Isolated by preparative TLC, except as noted.

Cyclohexane/benzene. c 2 equiv used. d With 1 equiv *e* Estimated proportion by of **dicyclohexyl-18-crown-6.** H NMR spectroscopy. f Mixture (~ 2.1) of geometric isomers.

Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl. Butyllithium was titrated with 2-propanol, with 1,lOphenanthroline **as** indicator. A Varian EM-360 spectrometer was used to measure 60-MHz proton NMR spectra, a JEOL MH-100 for 100-MHz spectra, with internal tetramethylsilane as reference. Infrared spectra were measured with a Beckman IR-5 instrument. Microanalyses were by Galbraith Laboratories, Knoxville, TN.

Boronic Esters (1). These were prepared by the method previously described.' Pinacol **l-(phenylthio)-2-phenylethane-**1-boronate $(1c)^1$ and the ethylene ketal of pinacol 1-(phenyl**thio)-5-hexanone-l-boronate** (le)6 have been reported previously. Properties of three new members of this series follow.

Pinacol **1-(Pheny1thio)heptane-1-boronate** (la) (from **1** bromohexane): 75%; bp 138-140 °C (0.2 torr); NMR (CCl4) δ 1.3 (m, 25, CH₂ + CH₃), 2.6 (t, 1, CH), 7.35 (m, 5, C₆H₅). Anal. Calcd for $C_{19}H_{31}BO_2S$: C, 68.26; H, 9.35; B, 3.23; S, 9.59. Found: C, 68.38; H, 9.37; B, 3.20; S, 9.69.

Pinacol **l-(Phenylthio)-3-pentene-l-boronate** (lb) (from crotyl bromide): 57%; bp 93 $^{\circ}$ C (0.025 torr); NMR (CC1₄) δ 1.2 (s, 12, CCH₃), 1.75 (d, 3, C=CCH₃), 2.4 (m, 3, CH₂CH), 5.55 (m, 2, CH=CH), 7.4 (m, 5, C₆H₅). Anal. Calcd for C₁₇H₂₅BO₂S: C 67.11; H, 8.28; B, 3.55; S, 10.54. Found: C, 67.03; H, 8.17; B, 3.25; S, 10.72.

Pinacol **l-(Phenylthio)-4-phenyl-3-butene-** 1-boronate (la) (from pinacol **lithio(pheny1thio)methaneboronate'** and cinnamyl chloride): 60%; bp 160-170 **"C (0.025** torr); NMR (CCl,) 6 1.2 $(s, 12, CCH₃)$, 2.65 (m, 3, CH₂CH), 6.45 (m, 2 CH=CH), 7.35 (m, 10, C_6H_5). Anal. Calcd for $C_{22}H_{27}BO_2S: C$, 72.13; H, 7.43; B, 2.95; S, 8.75. Found: C, 72.17; H, 7.45; B, 2.76; S, 8.74.

General Preparation **of** a-Phenylthio Aldehydes (2). To a stirred solution of 11 mmol of diisopropylamine in 50 mL of THF at 0 "C was added 10 mmol of n-butyllithium (2 M in hexane) followed by 10 mmol of the selected pinacol 1-(phe**ny1thio)alkane-1-boronate** in 20 mL of THF. After 4-6 h at 0 "C, 10 mmol of methyl formate was added, and the mixture was stirred 3-10 h at 20 °C. Acidification with 10% aqueous phosphoric acid was followed by extraction with ether, drying over magnesium sulfate, concentration, chromatography on a silica gel column with petroleum ether/benzene, and distillation. Yield and NMR

spectral data are recorded in Table I, and other data follow. 2-(Phenylthio)octanal (2a): simple distillation, bp 103-106

°C (0.07 torr); IR (neat) 1715 cm⁻¹ (C=O). Anal. Calcd for $C_{14}H_{20}$ OS: C, 71.14; H, 8.53; S, 13.56. Found: C, 70.89; H, 8.26; S, 13.57.

2-(Phenylthio)-4-hexenal (2b): simple distillation, bp 87-90 °C (0.2 torr); IR (neat) 1715 cm⁻¹ (C=O). Anal. Calcd for $C_{12}H_{14}OS: C$, 69.86; H, 6.84; S, 15.54. Found: C, 68.34; H, 6.64; S, 15.01.

2-(Phenylthio)-3-phenylpropanal(2c): distilled bulb to bulb at 130-135 °C (0.5 torr); IR (neat) 1710 cm⁻¹ (C=O). Anal. Calcd for C15H140S: C, 74.34; H, 5.82; S, 13.23. Found: C, 74.31; H, 5.96; S, 12.97.

2-(Phenylthio)-5-phenyl-4-pentenal(2d). Distilled bulb to bulb at 130-140 °C (0.1 torr); IR (neat) 1710 cm⁻¹ (C=O). Anal. Calcd for $C_{17}H_{16}$ OS: C, 76.08; H, 6.01; S, 11.95. Found: C, 75.78; H, 6.24; S, 12.14.

6-Ethylene Ketal **of 6-Oxo-Z-(phenylthio)heptan-** 1-a1 (2e): simple distillation, bp 135-145 °C (0.2 torr); IR (neat) 1710 cm⁻¹. Anal. Calcd for $C_{15}H_{20}O_3S$: C, 64.26; H, 7.19; S, 11.44. Found: C, 64.00; H, 6.93; S, 11.22.

Alkylation **of** 2-(Pheny1thio)octanal (2a). A portion of potassium hydride $(1-5 \text{ mmol})$ was washed free of oil with pentane, dried under vacuum, and weighed under argon. In the experiments that produced mixtures of 0- and C-alkylation products, THF (4 mL/mmol) was added, followed by 0.9 equiv of 2-(pheny1thio)octanal (2a) in some THF. In experiments that led to nearly exclusive C alkylation, cyclohexane **(10** mL/mmol) was added to the potassium hydride, followed by the 2a in benzene $(3-5$ mL/mmol). The mixture was stirred 5 min if in THF, 45 min if in cyclohexane/benzene, during which time hydrogen evolution occurred. An equivalent of the allylic or benzyl halide was added, stirring was continued **an** additional **5** min for reactions in THF or overnight for reactions in cyclohexane/benzene, and the mixture was treated with water and extracted with ether. The products were separated by preparative TLC.

2-Allyl-2-(phenylthio)octanal (3a). (From 2a and allyl bromide in THF or, preferably, cyclohexane/benzene): R_f 0.75 on silica with 2:1 benzene/petroleum ether; NMR (CCl₄) δ 1.5 $(m, 13, C_6H_{13})$, 2.35 (d, 2, C=CCH₂), 5.2 (m, 3, CH=CH₂), 7.45 $(m, 5, C_6H_5)$, 9.45 (s, 1, CHO). Anal. Calcd for $C_{17}H_{24}OS: C$, 73.86; H, 8.75; S, 11.60. Found: 73.62; H, 9.00; S, 11.34.

l-(Allyloxy)-2-(phenylthio)-l-octene (4a) (from 2a and allyl bromide in the THF): R_f 0.9 on silica with 2:1 benzene/petroleum ether; NMR (CCl₄) δ 0.9-1.4 (m, 11, C₅H₁₁), 2.25 (t, 2, $CH_2CH_2C=C$), 4.39 (d, 2, OCH₂), 5.2-6.0 (m, 3, CH=CH₂), 6.62 (s, 1, C=CHOR), 7.5 (m, 5, C_6H_5).

2-(2-Buten-l-y1)-2-(phenylthio)octanal (3b) (from 2a and crotyl bromide in cyclohexane/benzene) $R_f \sim 0.7$ in 1:6 ether/ petroleum ether; NMR (CDCI₃) δ 0.87 (m, 3, CH₃), 1.2-1.5 (m, 10, $(CH_2)_5$, 1.67 (d, J = 4 Hz, C=CHCH₃), 2.27 (m, 2, CH₂C=C), 0.1-0.15, CHO impurity). Anal. Calcd for $C_{18}H_{26}OS: C, 74.43;$ H, 9.02; S, 11.04. Found: C, 74.44; H, 9.14; S, 10.82. $5.4 \text{ (m, 2, CH=CH)}, 7.23 \text{ (s, 5, C₆H₅), 9.22 \text{ (s, 1, CHO)}, 9.41 \text{ (s, 2, 3, 4)}$

2-(3-Methyl-2-buten- **l-yl)-2-(phenylthio)octanal(3c)** (from 2a and **l-bromo-3-methyl-2-butene** in THF or, preferably, cyclohexane/benzene): *R,* 0.45 on silica in 2:l benzene/petroleum ether; NMR (CCl₄) δ 0.9 (m, 3, CH₃), 1.3 (m, 10, CH₂), 1.62 (s, 3, C=CCH3), 1.77 **(s,** 3, C=CCH,), 2.25 (m, 2, C=CCH2), 5.2 (m, 1, C==CH), 7.35 (m, 5, C6H5), 9.35 **(s,** 1, CHO); IR (neat) 1715 cm-'. Anal. Calcd for $C_{19}H_{28}OS$: C, 74.95; H, 9.27; S, 10.53. Found: C, 74.99; H, 9.43; S, 10.38.

⁽⁶⁾ Mendoza, **A.;** Matteson, D. S. J. *Organomet. Chem.* **1978,** *156,* **149-157.**

1-(3-Methyl-2-buten-l-yloxy)-2-(phenylthio)-l-octene (4c) (from **2a** and **l-bromc+3-methyl-2-butene** in THF, preferably with 1 equiv of dicyclohexyl-18-crown-6): R_f 0.75 on silica in 2:1 benzene/petroleum ether; NMR $(CCl₄)$ δ 0.9 (m, 3, CH₃), 1.3 (m, 8, CH₂), 1.77 (s, 3, CH₃), 1.85 (s, 3, CH₃), 2.25 (m, 2, C=CCH₂), 4.37 (d, 2, OCH₂), 5.4 (m, 1, C=CHCH₂), 6.52 (s, 1, C=CHOR), 7.17 (m, 5, C_6H_5); IR (neat) 1580, 1630 cm⁻¹ (C=C). Anal. Calcd for $C_{19}H_{28}OS$: C, 74.95; H, 9.27; S, 10.53. Found: C, 75.05; H, 9.07; S, 10.67.

2-Benzyl-2-(phenylthio)octanal (3d) (from 2a and benzyl bromide in cyclohexane/benzene): *Rf* 0.7 in 1:3 ether/petroleum ether; NMR (CDCl₃) δ 0.85 (m, 3, CH₃), 1.2-1.4 (m, 10, (CH₂)₅), CHO). Anal. Calcd for $C_{21}H_{26}$ OS: C, 77.25; H, 8.03; S, 9.82. Found: C, 77.15; H, 8.31; S, 9.60. 2.97, 3.01 *(s, s, 2, PhCH₂), 7.15, 7.25 (s, s, 10, C₆H₅), 9.38 (s, 1,*

2-Methyl-2-(phenylthio)octanal (3e) and l-Methoxy-2- (phenylthio)-l-octene **(48)** (from 2a and methyl iodide in THF, isomer mixture not separated): NMR (CCl₄) δ 0.88 (m, 3, CH₃, $3e + 4e$, 1.17 *(s, C-CH₃, 3e), 1.3 <i>(m, CH₂, 3e + 4e), 2.0 <i>(m, ~1,* C= \overline{CCH}_2 , 4e), 3.56, 3.61 **(s, s, ~1, ~0.5, 4e, E** and Z), 6.24, 6.38 $(s, s, \sim 0.35, \sim 0.15, 4e, E \text{ and } Z), 7.08 \text{ (m, } \sim 2.5, C_6H_5, 4e), 7.20$ $(s, \sim 2.5, C_6H_5, 3e), 9.15$ (s, ~ 0.5 , CHO, 3e).

Acknowledgment. We thank the National Science Foundation for support, Grant No. CHE77-11283.

Registry No. la, 81447-38-3; lb, 81447-39-4; IC, 66080-30-6; Id, 81447-40-7; le, 67808-83-7; 2a, 81447-41-8; 2b, 81447-42-9; 2c, 55064-98-7; **2d,** 81456-91-9; 2e, 81447-43-0; 3a, 81447-44-1; 3b, 81447-45-2; 3c, 81456-92-0; 3d, 81447-46-3; 3e, 81447-47-4; 4a, 81447-48-5; 4c, 81447-49-6; (E)-4e, 81447-50-9; (Z)-4e, 81447-51-0; allyl bromide, 106-95-6; (E)-crotyl bromide, 29576-14-5; l-bromo-3 methyl-2-butene, 870-63-3; benzyl bromide, 100-39-0; methyl iodide, 74-88-4.

Oxidation of Ionol **by** Silver(1)

Roger S. Macomber

Department *of* Chemistry, University *of* Cincinnati, Cincinnati, Ohio **45221**

Received December **2, 1981**

Silver(1) salts have long served the organic chemist as versatile, yet mild, one-electron oxidizing agents.¹ ϵ° _{red} for Ag^+ (aq) is $+0.80$ V. Several years ago we began investigating the reaction of $Ag(I)$ with alkoxide ions in hopes of studying the chemistry of silver alkoxides. We found2 that Ag(1) does indeed react instantaneously and irreversibly with **all** alkoxides studied, but the silver alkoxides proved highly unstable at 25 "C (though somewhat more stable at -78 °C). For example, reactions of Ag(I) with methoxide in methanol or ethoxide in ethanol at 25 °C gave metallic silver in quantitative yield. Oxidation products deriving from the alkoxy fragment eluded identification, though the obvious ones (aldehydes, etc.) were specifically excluded. When the solvent in the above reactions was changed to THF or when the oxide was phenoxide or tert-butoxide, the reactions proved even less tractable? Our frustration at being unable to identify the products from the (presumed) alkoxy radicals has led us to investigate the Ag(1) oxidation of oxides which would give either persistent free radicals or products characteristic of these intermediates. BHT (2,6-di-tert-butyl-4 methylphenol, ionol, 1) is just such a compound.

The literature reports hundreds of studies of the reaction of **1** with a wide variety of oxidizing agents. Although **AgpO**

Figure 1. ESR spectrum of the supernatant from the oxidation of the conjugate base of 1 with Ag(1).

has been used to convert catechols to quinones³ and oxidize 2,6-dimethylphenol, 4 we were unable to find reports on the oxidation of **1** with Ag(1). These are, nonetheless, recent reports of related oxidations of **1.** For example, while **¹** reacts with KMnO₄ to give over a dozen products,⁵ it reacts cleanly with thallium(II1) nitrate to give **2.6** Most relevant

to our work is the oxidation of **1** with DDQ, which is Compounds 4 and 6 were isolated, the former being somewhat unstable; evidence for the intermediacy of **5** came from its ultraviolet spectrum $(\lambda_{\text{max}} 284 \text{ nm}, \log \epsilon 4.45)$ and the formation of 6. Support for the involvement of phenoxy radical 3 came from the solid-state **ESR** spectrum of **4,** which exhibited a four-line pattern.

Results

A methanol solution containing equimolar amounts of 1 and Ag(1) was essentially stable at room temperature. After the solution was left standing for 17 days, a perceptible silver mirror had formed, but this constituted less than **5%** of the silver present.8 In sharp contrast, when 1 was first converted to its conjugated base, it reacted instantaneously with 1 mol equiv of $Ag(I)$ to give a grayish-black precipitate and a nearly colorless supernatant. The precipitate proved to be Ag, formed in quantitative yield. Examination of the supernatant by ESR spectros-

⁽¹⁾ L. F. Fieser and M. Fieser, 'Reagents for Organic Synthesis", Wiley, New York, 1967, and later volumes in the series.

(2) R. S. Macomber, J. C. Ford, and J. H. Wenzel, *Synth. React. Inorg.*

Met.-Org. Chem., **7(2) 111 (1977).**

⁽³⁾ **See, for example, R. Wellstatter and A. Pfannensteil,** *Ber. Dtsch. Chem. Ges.,* **37,4744 (1904).**

⁽⁴⁾ B. *0.* **Lindgren,** *Acta. Chem. Scand.,* **14, 1203 (1960); the major (5) B. M. Benjamin, V. R. Raaen, E. W. Hagaman, and L. L. Brown, product (15%) was 2,6-dimethyl-4-(2,6-dimethylphenoxy)phenol.**

J. Org. Chem., **43, 2986 (1978).**

⁽⁶⁾ A. Mckillop, D. **H. Perry, M. Edwards,** *S.* **Antus, L. Farkas, M. Nogradi, and E. C. Taylor** *J. Org. Chem.,* **41, 282 (1976).**

⁽⁷⁾ H.-D. Becker, *J. Org. Chem., 30,* **982 (1965).**

⁽⁸⁾ We have found that photolysis of this solution gives a much more rapid deposition of silver metal. The details of these experiments, as related to some earlier work,⁹ will be reported later.

⁽⁹⁾ R. S. Macomber, S. Carr, P. Boudjouk, and C. Kapfer, *J. Org. Chem.,* **45, 356 (1980).**